87 resultados para Tratamento de água

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-flotator vibrational prototype electromechanical drive for treatment of oil and water emulsion or like emulsion is presented and evaluated. Oil production and refining to obtain derivatives is carried out under arrangements technically referred to as on-shore and off-shore, ie, on the continent and in the sea. In Brazil 80 % of the petroleum production is taken at sea and area of deployment and it cost scale are worrisome. It is associated, oily water production on a large scale, carrier 95% of the potential pollutant of activity whose final destination is the environment medium, terrestrial or maritime. Although diversified set of techniques and water treatment systems are in use or research, we propose an innovative system that operates in a sustainable way without chemical additives, for the good of the ecosystem. Labyrinth adsor-bent is used in metal spirals, and laboratory scale flow. Equipment and process patents are claimed. Treatments were performed at different flow rates and bands often monitored with control systems, some built, other bought for this purpose. Measurements of the levels of oil and grease (OGC) of efluents treaty remained within the range of legal framework under test conditions. Adsorbents were weighed before and after treatment for obtaining oil impregna-tion, the performance goal of vibratory action and treatment as a whole. Treatment technolo-gies in course are referenced, to compare performance, qualitatively and quantitatively. The vibration energy consumption is faced with and without conventional flotation and self-flotation. There are good prospects for the proposed, especially in reducing the residence time, by capillary action system. The impregnation dimensionless parameter was created and confronted with consecrated dimensionless parameters, on the vibrational version, such as Weber number and Froude number in quadratic form, referred to as vibrational criticality. Re-sults suggest limits to the vibration intensity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The petroleum production is associated to the produced water, which has dispersed and dissolved materials that damage not only the environment, but also the petroleum processing units. This study aims at the treatment of produced water focusing mainly on the removal of metals and oil and using this treated water as raw material for the production of sodium carbonate. Initially, it was addressed the removal of the following divalent metals: calcium, magnesium, barium, zinc, copper, iron, and cadmium. For this purpose, surfactants derived from vegetable oils, such as coconut oil, soybean oil, and sunflower oil, were used. The investigation showed that there is a stoichiometric relationship between the metals removed from the produced water and the surfactants used in the process of metals removal. It was also developed a model that correlates the hydrolysis constant of saponified coconut oil with the metal distribution between the resulting stages of the proposed process, flocs and aqueous phases, and relating the results with the pH of the medium. The correlation coefficient obtained was 0.963. Next, the process of producing washing soda (prefiro soda ahs ou sodium carbonate) started. The resulting water from the various treatment approaches from petroleum production water was used. During this stage of the research, it was observed that the surfactant assisted in the produced water treatment, by removing some metals and the dispersed oil entirety. The yield of sodium carbonate production was approximately 80%, and its purity was around 95%. It was also assessed, in the production of sodium carbonate, the influence of the type of reactor, using a continuous reactor and a batch reactor. These tests showed that the process with continuous reactor was not as efficient as the batch process. In general, it can be concluded that the production of sodium carbonate from water of oil production is a feasible process, rendering an effluent that causes a great environmental impact a raw material with large scale industrial use

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eutrophication is a growing process present in the water sources located in the northeast of Brazil. Among the main consequences of these changes in trophic levels of a water source, stands out adding complexity to the treatment to achieve water standards. By these considerations, this study aimed to define, on a laboratory scale, products and operational conditions to be applied in the processing steps using raw water from Gargalheiras dam, RN, Brazil. The dam mentioned shows a high number of cyanobacteria, with a concentration of cells / ml higher than that established by Decree No. 518/04 MS. The same source was also considered by the state environmental agency in 2009 as hypereutrophic. The static tests developed in this research simulated direct filtration (laboratory filters) and pre-oxidation with chlorine and powdered activated carbon adsorption. The research included the evaluation of the coagulants aluminum hydrochloride (HCA) and alum (SA). The development of the research investigated the conditions for rapid mixing, the dosages of coagulants and pHs of coagulation by the drawing of diagrams. The interference of filtration rate and particle size of filtering means were evaluated as samples and the time of contact were tested with chlorine and activated carbon. By the results of the characterization of the raw water source it was possible to identify the presence of a high pH (7.34). The true color was significant (29 uH) in relation to the apparent color and turbidity (66 uH and 13.60 NTU), reflecting in the measurement of organic matter: MON (8.41 mg.L-1) and Abs254 (0.065 cm-1). The optimization of quick mix set time of 17", the speed gradient of 700 s-1 in the coagulation with HCA and the time of 20" with speed gradient of 800 s-1 for SA. The smaller particle sizes of sand filtering means helped the treatment and the variation in filtration rate did not affect significantly the efficiency of the process. The evaluation of the processing steps found adjustment in standard color and turbidity of the Decree nº 518/04 MS, taking in consideration the average values found in raw water. In the treatment using the HCA for direct filtration the palatable pattern based on the apparent color can be achieved with a dose of 25 mg L-1. With the addition of pre-oxidation step, the standard result was achieved with a reduced dose for 12 mgHCA.L-1. The turbidity standard for water was obtained by direct filtration when the dose exceeds 25 mg L-1 of HCA. With pre-oxidation step there is the possibility of reducing the dose to 20 mg L-1.The addition of CAP adsorption, promoted drinking water for both parameters, with even lower dosage, 13 mg L-1 of HCA. With coagulation using SA removal required for the parameter of apparent color it was achieved with pre-oxidation and 22 mgSA.L-1. Despite the satisfactory results of treatment with the alum, it was not possible to provide water with turbidity less than 1.00 NTU even with the use of all stages of treatment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current environmental crisis demands transformations in the relations among society, nature and development, considering sustainability. In this context, an important theme is replacing fossil fuels with biofuels, such as biodiesel. Moringa oleifera Lam. is a species that can be used as a raw material to produce biodiesel. Besides, it is a multiple purposes plant, which can be used also in water treatment. Thus, the aims of this work were to analyze the anatomical adaptations found in the stem and in the leaf and the seed s oil stores of M. oleifera., to investigate chemical characteristics of M. oleifera s seed oil, considering biodiesel production, and to evaluate the coagulation activity of these seeds in water treatment. Semipermanent histological laminas were made and it follows that the stem has thick cuticle, stomata whose cells guard are below the epidermis line, hollow medulla, druses and tector trichomes as adaptations to climate and soil conditions in which the species is found and the leaf is dorsiventral and it has thick cuticle, tector trichomes and druses. The seed has great reserves of oil. These features favor the use of Moringa oleifera Lam. as a raw material to produce biodiesel in Brazil s Northeast semiarid region. Chemical analysis were made through oil solvent extraction using mechanic stirrer. The oil was analyzed in UV spectrophotometer. A transesterification was made and biodiesel was analyzed in gas chromatography. Oil yield was high and good quality biodiesel was obtained. To evaluate seeds coagulantion activity, coagulation and flocculation essays in jartest were made, using seed extract to treat raw water. Seeds were efficient in cogulation process to treat water. So, they can be used in rudimentary systems or as a raw material to coagulant proteins extraction, as an alternative to traditional coagulants. M. oleifera has characteristics that favor its use to biodiesel production and water treatment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principal effluent in the oil industry is the produced water, which is commonly associated to the produced oil. It presents a pronounced volume of production and it can be reflected on the environment and society, if its discharge is unappropriated. Therefore, it is indispensable a valuable careful to establish and maintain its management. The traditional treatment of produced water, usualy includes both tecniques, flocculation and flotation. At flocculation processes, there are traditional floculant agents that aren’t well specified by tecnichal information tables and still expensive. As for the flotation process, it’s the step in which is possible to separate the suspended particles in the effluent. The dissolved air flotation (DAF) is a technique that has been consolidating economically and environmentally, presenting great reliability when compared with other processes. The DAF is presented as a process widely used in various fields of water and wastewater treatment around the globe. In this regard, this study was aimed to evaluate the potential of an alternative natural flocculant agent based on Moringa oleifera to reduce the amount of oil and grease (TOG) in produced water from the oil industry by the method of flocculation/DAF. the natural flocculant agent was evaluated by its efficacy, as well as its efficiency when compared with two commercial flocculant agents normally used by the petroleum industry. The experiments were conducted following an experimental design and the overall efficiencies for all flocculants were treated through statistical calculation based on the use of STATISTICA software version 10.0. Therefore, contour surfaces were obtained from the experimental design and were interpreted in terms of the response variable removal efficiency TOG (total oil and greases). The plan still allowed to obtain mathematical models for calculating the response variable in the studied conditions. Commercial flocculants showed similar behavior, with an average overall efficiency of 90% for oil removal, however it is the economical analysis the decisive factor to choose one of these flocculant agents to the process. The natural alternative flocculant agent based on Moringa oleifera showed lower separation efficiency than those of commercials one (average 70%), on the other hand this flocculant causes less environmental impacts and it´s less expensive

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contamination of water sources of public drinking by waste originated by anthropogenic activities has brought various risks to human health. Among the consequences of such activities can highlight the bloom of microalgae and cyanobacteria, which have the potential to produce toxins dangerous to humans, and the presence of humic substances that are generated by the decomposition of natural organic matter (NOM), such as vegetation. When found in water sources for public supply, present negative aspects conferring high color, odor and taste. The double filtration technology has good efficiency in water with the presence of cyanobacteria and different quality variations. Therefore, this study aimed to evaluate the behavior of the technique of double filtration with pre-oxidation for water purifiers the lagoon of Extremoz-RN, which currently has high concentrations of cyanobacteria. The research is summarized in four phases: the first phase turned to static tests in jarteste equipment in the laboratory and subsequent phases were tested in the Pilot Plant of Double Filtration. For the second and third stage filtration rates were tested filtration rates of 120 and 180 m3 / m2 .day for ascending boulders filters and 160 and 240 m3 / m2 .day in the filters in quick sand descendants. The last phase aimed to evaluate the double filtration with pre-oxidation. The results demonstrated that the system could produce double filtration in all trials of good quality water according to the Decree nº. 2914/11 of the Ministry of Health. The use of preoxidation favored the removal of microcystin and color at the end of the tests, reaching a percentage of color removal around 60%. The analysis of variance in the data, enabled prove that the filtration rates of 180 m3 / m2.d the gravel filter and 240 m3 /m2 .d in rapid filters, were the most significant for the removal of turbidity. The ascending filter of boulder 4 with particle size finer filter layer showed the best performance and the best means of turbidity and apparent color. The rapid filter downward 1 was more efficient in removing turbidity reaching removal about 100%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water supply and treatment is considered as a great benefit considering that, if done efficiently, provides public health. However, considering the WTP (Water Treatment Plant) is an industry, with its inputs and waste generation, they must be constantly evaluated and monitored to verify the best and most appropriate way to process and dispose their waste, minimizing therefore the potential impacts to the environment. By volume, the most significant waste is the rapid filter backwash water. It is very common the disposal of this waste without treatment in water sources, which are used, for the most part, as a water supply source of a downstream population. This study evaluated quantitative and qualitative parameters in filter backwash water in three WTP - Itaitinga, Maranguape and Pacatuba, located in Ceará State, northeast of Brazil. It was found that the Maranguape WTP, in terms of treatment capacity, is the larger. The Itaitinga WTP is the one that consumes more water during filters washing. The Pacatuba WTP exhibited higher concentration of total suspended and settleable solids, COD and aluminum in the filters backwash water. It is noteworthy that the settleable solids and total suspended solids in all three WTP are above the effluent discharge standard recommended by Resolution 154/2002 of SEMACE (State Superintendent of Environment of Ceará). It was concluded that the filter backwash water from the study WTP exceeded the allowed values for legislation to be disposed directly into surface water bodies. It is suggested as an alternative to treat and recycle the filter backwashing water the construction of sludge settling ponds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, the oil industry is the biggest cause of environmental pollution. The objective was to reduce the concentration of copper and chromium in the water produced by the oil industry. It was used as adsorbent natural sisal fiber Agave sp treated with nitric acid and sodium hydroxide. All vegetable fibers have physical and morphological properties that enablies the adsorption of pollutants. The basic composition of sisal is cellulose, hemicellulose and lignin. The features are typically found in the characterization of vegetable fibers, except the surface area that was practically zero. In the first stage of adsorption, it was evaluated the effect of temperature and time skeeking to optimize the execution of the factorial design. The results showed that the most feasible fiber was the one treated with acid in five hours (30°C). The second phase was a factorial design, using acid and five hours, this time was it determined in the first phase. The tests were conducted following the experimental design and the results were analyzed by statistical methods in order to optimize the main parameters that influence the process: pH, concentration (mol / L) and fiber mass/ metal solution volume. The volume / mass ratio factor showed significant interference in the adsorption process of chromium and copper. The results obtained after optimization showed that the highest percentages of extraction (98%) were obtained on the following operating conditions: pH: 5-6, Concentration: 100 ppm and mass/ volume: 1 gram of fiber/50mL solution. The results showed that the adsorption process was efficient to remove chromium and copper using sisal fibers, however, requiring further studies to optimize the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-flotator vibrational prototype electromechanical drive for treatment of oil and water emulsion or like emulsion is presented and evaluated. Oil production and refining to obtain derivatives is carried out under arrangements technically referred to as on-shore and off-shore, ie, on the continent and in the sea. In Brazil 80 % of the petroleum production is taken at sea and area of deployment and it cost scale are worrisome. It is associated, oily water production on a large scale, carrier 95% of the potential pollutant of activity whose final destination is the environment medium, terrestrial or maritime. Although diversified set of techniques and water treatment systems are in use or research, we propose an innovative system that operates in a sustainable way without chemical additives, for the good of the ecosystem. Labyrinth adsor-bent is used in metal spirals, and laboratory scale flow. Equipment and process patents are claimed. Treatments were performed at different flow rates and bands often monitored with control systems, some built, other bought for this purpose. Measurements of the levels of oil and grease (OGC) of efluents treaty remained within the range of legal framework under test conditions. Adsorbents were weighed before and after treatment for obtaining oil impregna-tion, the performance goal of vibratory action and treatment as a whole. Treatment technolo-gies in course are referenced, to compare performance, qualitatively and quantitatively. The vibration energy consumption is faced with and without conventional flotation and self-flotation. There are good prospects for the proposed, especially in reducing the residence time, by capillary action system. The impregnation dimensionless parameter was created and confronted with consecrated dimensionless parameters, on the vibrational version, such as Weber number and Froude number in quadratic form, referred to as vibrational criticality. Re-sults suggest limits to the vibration intensity

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this work is the treatment of produced water from oil by using electrochemical technology. Produced water is a major waste generated during the process of exploration and production in the oil industry. Several approaches are being studied aiming at the treatment of this effluent; among them can be cited the biological process and chemical treatments such as advanced oxidation process and electrochemical treatments (electrooxidation, electroflotation, electrocoagulation, electrocoagulation). This work studies the application of electrochemical technology in the treatment of the synthetic produced water effluent through the action of the electron, in order to remove or transform the toxic and harmful substances from the environment by redox reactions in less toxic substances. For this reason, we used a synthetic wastewater, containing a mixture H2SO4 0,5M and 16 HPAs, which are: naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo (a) anthracene, chrysene, benzo(b)fluoranthene, benzo(k) fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, h, i)perylene. Bulk electrochemical oxidation experiments were performed using a batch electrochemical reactor containing a pair of parallel electrodes, coupled with a power supply using a magnetic stirrer for favoring the transfer mass control. As anodic material was used, a Dimensionally Stable Anode (DSA) of Ti/Pt, while as cathode was used a Ti electrode. Several samples were collected at specific times and after that, the analysis of these samples were carried out by using Gas Chromatography Coupled to Mass Spectrometry (GC - MS) in order to determine the percentage of removal. The results showed that it was possible to achieve the removal of HPAs about 80% (in some cases, more than 80%). In addition, as an indicator of the economic feasibility of electrochemical treatment the energy consumption was analyzed for each hour of electrolysis, and based on the value kWh charged by ANEEL, the costs were estimated. Thus, the treatment costs of this research were quite attractive

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The current study examined spatial-temporal modifications and water quality through chemical and biotic indicators during both dry (January, February and November 2006) and wet seasons (March to June 2006). This study was carried out in Armando Ribeiro Gonçalves Reservoir, RN, Canal do Pataxó and after the water station treatment (WST). The physical-chemical parameters were measured in situ and inorganic nutrients, chlorophyll a and Free Oxygen Demand (FOD) were analyzed in laboratory conditions. Quali quantitative analyses of phytoplankton were carried out utilizing Sedgwick-Rafter camera. Results indicate that DQO concentrations were low. FOD concentrations in the reservoir were comparatively higher in the dry season (5.21 mgL-1; 5.64 mgL-1 e 6.05 mgL-1) in relation to the wet season (4.52 mgL-1; 4.12 mgL-1 e 4.92 mgL-1), in surface, intermediate and bottom waters, respectively. FOD values were inferior to 1.0mgL-1in both Canal do Pataxó and after WST, which is considered adequate for public use reservoirs. Although FOD concentrations were low, Armando Ribeiro Gonçalves Reservoir, Canal do Pataxó and WST were classified as euthophizied, mesotrophic ad oligotrophic, respectively, considering the Index of Trophic State Criteria. Chlorophyll a concentrations in the study reservoir were higher in the surface (199.2 µgL-1) during the wet season, whereas in Canal do Pataxó concentrations decreased from 1.56 µgL-1 to 0.028 µgL-1, and after WST values were low (0.059 µgL-1). Dominance of cianobacterias, such as Planktotrhix agardhii (dry season) and Microcystis sp (wet season) was registered in all three areas. In the reservoir and Canal do Pataxó, density of cianobacterias, such as P. agardhii and Microcistys sp., was superior to the values allowed by the Health ministry (HM). However, after WST, density values of cianobacteria were inferior to values established by the HM

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The production of water has become one of the most important wastes in the petroleum industry, specifically in the up stream segment. The treatment of this kind of effluents is complex and normally requires high costs. In this context, the electrochemical treatment emerges as an alternative methodology for treating the wastewaters. It employs electrochemical reactions to increase the capability and efficiency of the traditional chemical treatments for associated produced water. The use of electrochemical reactors can be effective with small changes in traditional treatments, generally not representing a significant additional surface area for new equipments (due to the high cost of square meter on offshore platforms) and also it can use almost the same equipments, in continuous or batch flow, without others high costs investments. Electrochemical treatment causes low environmental impact, because the process uses electrons as reagent and generates small amount of wastes. In this work, it was studied two types of electrochemical reactors: eletroflocculation and eletroflotation, with the aim of removing of Cu2+, Zn2+, phenol and BTEX mixture of produced water. In eletroflocculation, an electrical potential was applied to an aqueous solution containing NaCl. For this, it was used iron electrodes, which promote the dissolution of metal ions, generating Fe2+ and gases which, in appropriate pH, promote also clotting-flocculation reactions, removing Cu2+ and Zn2+. In eletroflotation, a carbon steel cathode and a DSA type anode (Ti/TiO2-RuO2-SnO2) were used in a NaCl solution. It was applied an electrical current, producing strong oxidant agents as Cl2 and HOCl, increasing the degradation rate of BTEX and phenol. Under different flow rates, the Zn2+ was removed by electrodeposition or by ZnOH formation, due the increasing of pH during the reaction. To better understand the electrochemical process, a statistical protocol factor (22) with central point was conducted to analyze the sensitivity of operating parameters on removing Zn2+ by eletroflotation, confirming that the current density affected the process negatively and the flow rate positively. For economical viability of these two electrochemical treatments, the energy consumption was calculated, taking in account the kWh given by ANEEL. The treatment cost obtained were quite attractive in comparison with the current treatments used in Rio Grande do Norte state. In addition, it could still be reduced for the case of using other alternative energy source such as solar, wind or gas generated directly from the Petrochemical Plant or offshore platforms

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The production of petroleum is frequently accomplished with great volumes of water, that it is carried of the underground with the oil. It is a challenge of the present century the development of technologies that allow the use of waste water for purposes that consume great amounts of water and don't demand as rigid as the one of the drinking water requirements. The solar distillation has been configuring as an alternative of clean technology for desalination of brine and saline. Besides causing the minimum possible damage to the environment, it takes advantage of an abundant and free energy source: the solar energy. That study aims to develop a Solar Distillator for treatment of the produced water of the oil wells, to obtain an efluent to use in agriculture and vapor generation. The methodology for collection, conservation and analysis of the physical-chemical parameters obeyed the norms in APHA (1995). The sampling was of the composed type. Experiments were accomplished in the solar distillation pilot and simulation in thermostatic bathing. The operation was in batch system and for periods of 4, 6 and 12 h. The developed Distillator is of the type simple effect of two waters. It was still tested two inclination angles for covering; 20º and 45º. The Distillator presented minimum of 2,85 L/m2d revenues and maximum of 7,14 L/m2d. The removals of salts were great than 98%. The removal of TOC in the simulation was great than 90%. In agreement with the data of energy and mass balance, it was verified that the developed solar Distillator presented compatible revenues with those found in literature for similar types. It can be inferred that the obtained distilled water assists to the requirements CONAMA in almost all the points and could be used for irrigation of cultures such as cotton and mamona. As the distilled water has characteristics of fresh water it can be used in the generation of vapor

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The treatment of oil produced water and its implications are continually under investigation and several questions are related to this subject. In the Northeast Region Brazil, the onshore reservoirs are, in its majority, mature oil fields with high production of water. As this oil produced water has high levels of oil, it cannot be directly discarded into the environment because it represents a risk for contamination of soil, water, and groundwater, or even may cause harm to living bodies. Currently, polyelectrolytes that promote the coalescence of the oil droplets are used to remove the dispersed oil phase, enhancing the effectiveness of the flotation process. The non-biodegradability and high cost of polyelectrolytes are limiting factors for its application. On this context, it is necessary to develop studies for the search of more environmentally friendly products to apply in the flotation process. In this work it is proposed the modeling of the flotation process, in a glass column, using surfactants derived from vegetal oils to replace the polyelectrolytes, as well as to obtain a model that represents the experimental data. In addition, it was made a comparative study between the models described in the literature and the one developed in this research. The obtained results showed that the developed model presented high correlation coefficients when fitting the experimental data (R2 > 0.98), thus proving its efficiency in modeling the experimental data.